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Abstract. We give an approach to finding rational solutions of completely intagrable
hierarchies, which makes use of the relationship between modifications and the Schwarzian
equations obtained via the singular manifold method. This extends the recent work of
Kudryashov, which allowed a simple derivation of the iteration used to construct sequences
of such solutions. We also give a closed form for the index polynomial of the Schwarzian
Korteweg—de Vries hierarchy.

In addition we consider the representation of rational solutions using lower families of the
hierarchy. We give a simple representation under which the rational solutions remain solutions
of every flow of the hierarchy. This representation also allows the inclusion of arbitrary data
corresponding to negative indices.

We use our method to derive an alternative form of tféelBund transformation for the
hierarchy of the second Painkeequation, as well as new solutions of a hierarchy of breaking
soliton equations. We also present here for the first time a Schwarzian version of this breaking
soliton hierarchy.

1. Introduction

Rational solutions of integrable hierarchies have proved to be of interest to many workers
over the years. The first to obtain such solutions for the Korteweg—de Vries (KdV) equation
were Airault, McKean and Moser [1]; this was followed by the work of Adler and Moser [2],
and Ablowitz and Satsuma [3, 4]. Weiss later showed how the singular manifold method [5],
based on truncating the Weiss—Tabor—Carnevale (WTC) Pé&indeypansion [6], could

also be used to obtain rational solutions [7, 8] (for the KdV and Boussinesq equations,
respectively). More recent approaches to this problem can be found in [9] and references
therein.

The approach of Weiss involved finding and using invariances of the singular manifold
equations in order to obtain a recursion relation for the iterative construction of rational
solutions. In a recent paper [10] one of the authors of the present paper showed that
this iterative formula could be much more simply obtained by considering, for modified
equations, a double iteration of the Weiss truncation. In the current work we are interested in
further extending this approach, and so also that of Weiss, in order to allow the construction
of rational solutions for every member of a hierarchy of completely integrable partial
differential equations (PDEs). For the KdV hierarchy, for example, this then provides
an alternative means of deriving the solutions of Adler and Moser [2].
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9506 N A Kudryashov and A Pickering

The approach developed here involves understanding the connection between truncated
Painlee expansions and Miura maps, i.e. between the Schwarzian equations obtained via
truncation and modified equations. The solutions we construct are in fact solutions of the
corresponding Schwarzian hierarchies; solutions of the original hierarchy and others are then
obtained using maps from the Schwarzian hierarchy. We also show how to derive a closed
form for the index (resonance) polynomial of any family of any flow of the Schwarzian
KdV (SKdV) hierarchy.

Such closed forms for the index polynomial of any family of any flow of a hierarchy
are useful when it comes to understanding what happens when we use a truncated Painlev
expansion. They are also useful when we want to give an interpretation of the representation
of rational solutions using ‘lower’ families, i.e. those whose standard P&réepansions
have less than the full complement of arbitrary data. We later give a means of representing
the rational solutions of the KdV hierarchy (simultaneously solutions of every flow) using
such lower families; these representations include arbitrary data corresponding to negative
indices.

The application of our approach to the hierarchy of the second Péairdguation
(Py1) [11-13] allows us to derive a new and very simple form of tléelBund transformation
for that hierarchy [11]. This generalizes the results of Weiss [14] foit$elf. Further new
results are obtained through our consideration of a hierarchy of ‘breaking soliton’ equations
in 2+ 1 dimensions [15-17]. We give here for the first time a Schwarzian version of
this hierarchy, and then use our approach to derive new solutions of this hierarchy. These
solutions are rational in and and include arbitrary functions of; suitable choices of
these functions reduce these solutions to the rational solutions of the KdV hierarchy, which
is a (1 + 1)-dimensional reduction of the 2 1 hierarchy.

The paper is organized as follows. In section 2 we explore the relationship between
Miura maps and truncated Pain&expansions, and we show how the iterative formula for
the generation of sequences of rational solutions can be derived from a double iteration of
the constant-level truncation. In section 3 we obtain the families and index polynomial of
the SKdV hierarchy. We also consider the result of seeking a truncated Faatpansion
for the modified KdV (mKdV) hierarchy. A simple lemma is given which proves useful in
section 4, which is where we derive rational solutions of the SKdV hierarchy. In section 5
we discuss the representation of solutions of the KdV (and SKdV) hierarchy using lower
families. In section 6 we consider the application of our techniques to theid?archy.
Section 7 sees the extension of our techniques to breaking soliton equations- th 2
dimensions. Section 8 is devoted to a summing up of our results and conclusions.

2. Muira maps and Painlewe truncation

Given two differential equations, say

D[u] =0 (1)
and

E[z] =0 (2)

we say that we have a map of equation (2) into (1) if we have a differential substitution of
the form

u=F[z,zx,...] 3



Rational solutions for Schwarzian integrable hierarchies 9507

such that for some differential operat@r
D[u] = CE[z]. (4)

Differential substitutions of the form (3) map solutions of (2) into solutions of (1);
examples of such maps include Miura maps, linearizing transformations such as the Cole—
Hopf transformation, and truncated Pairéegxpansions. Here we will be interested in
the connections between Miura maps and truncated Pé&irdgpansions, that is, between
modified equations and singular manifold equations. We will see how such connections can
be useful in deriving rational solutions.

Let us take the KdV hierarchy in the form

Wiy + R0y = gy, + Konya[o] = wy,,., + Bxb”Jrl[a)] =0 n=01,... (5)

whered, = 9/0x (similarly in what follows forad,, etc) and the recursion operat@r is
given [18] by

R =92 + 4w + 20,9;* (6)
and let us consider the two successive modifications

o = Qu] = u, — u? (7)
and

u=Ulg] = %(‘”-) ®)
Then of course we have the well known relations

RQ[u] ‘w:mu] — QuR 9)
where

R =0%—4u® — du, 8 u (10)
and

RU'[¢] = U'l¢IR (11)

u=U[g]

where

R = .07 0. 0.0 10,0 %0, (12)

and Q'[u] and U'[¢] denote the Fechet derivatives of2[u] and U[¢] respectively:
Qul =8 —20  U'lpl = 39:9; 0 (13)
We then obtain the mKdV and SKdV hierarchies as
Uiyyr + ﬁnux = Uty + Kopia[u] = Uyyoy + 0x (0 + 2u) b"[uy — u2] =0

n=01... (14)
and
Do + R'0x = @11 + K2uial@] = @11 + 200" 303 x}] = 0 n=0,1... (15
respectively, where in (15)p; x} denotes the Schwarzian derivative @f

(pXX l (pXX 2
() 32)
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introduced through the composition of (7) and (8)

o =uy —u®= g x}. (17)
Corresponding to equation (4) we of course have the relations

Wiy + Konga[o] = Q'u] (s, + K2ns1[u]) (18)
and

iy oy + Konalu] = U'[9) (00,1 + Konpalgl)- (19)

It is the SKdV hierarchy that we will use to generate rational solutions of the mKdV and
KdV hierarchies. The mKdV and KdV hierarchies have the same sequence of singular
manifold equations (see [19] for definitions) and for zero value of the spectral parameter
this sequence becomes precisely the SKdV hierarchy (15). The connection between Miura
maps and truncated Painkexpansions can be seen using the invariance of the SKdV
hierarchy under the ®bius group; sending — —1/¢ gives

X 1 XX
u:—‘p—+—(‘” ) (20)
¢ 2\ ¢

is a solution of the mKdV hierarchy provided that equation (15) holds. Given that (8) is also
a solution of the mKdV hierarchy we see that (20) defines an aatkiBnd transformation
between two solutions andu; of the mKdV hierarchy as

1

u:—&+u1 u1=—<(pxx>. (22)
@ 2\ ¢«

The invariance of the mKdV hierarchy under— —u then gives a second auta@&klund

transformation between two solutionsandv; as

X 1 ‘X
v:z——l—vl v1=——<i> (22)
z 2\ zy

for any solutionz of
Sont1lz] = 2,y + 220" [31z; ¥}] = 0. (23)

Expressions (21) and (22) are of course the Pamlkexpansions for the principal families
of the mKdV hierarchy truncated at constant level. From equation (19) we find that
corresponding to (20) we have the relation

_ 1 1 2
iy s + Konialu] = Eax(;ax - ;)Sznﬂ[(ﬁ] (24)

which gives precisely the same result as substituting the truncated Raetpansion (21)
in the mKdV hierarchy (see section 3), and similarly for the truncation (22).

Following the approach in [10] we perform a double iteration of this constant-level
truncation and identify:; = v to obtain

Z2

$x = — (25)
2y
which is the formula used by Weiss to obtain rational solutions of the KdV equation. This
formula allows the iterative construction of solutions of (23) via

%

(26)

Zk+1lx = .
Zk,x

This double iteration of the Weiss aut@€klund transformation makes use of the two
principal families of the mKdV hierarchy and greatly simplifies the derivation of the iterative
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formula (26). Being a double iteration of the constant-level truncation, this approach is
different from those based on the use of two singular manifolds [20, 21]; recall that the
equations that we are using here are the singular manifold equations of the mKdV hierarchy
for zero value of the spectral parameter, i.e. they are those found using the Weiss constant-
level truncation.

3. Families and indices of the SKdV hierarchy

In [22] we gave a closed form for the Painéeindex polynomial of any family of any flow
of the KdV hierarchy; the proof was presented in [23]. We then showed [24] how the Muira
map (7) could be used to obtain the families and index polynomial for the mKdV hierarchy.
We now use the Miura map (8) to obtain the families and index polynomial for the SKdV
hierarchy (15). Use will be made of these results later.

Let us recall that in the application of the WTC Pairéaest to the KdV hierarchy (5),
the families are given [22-26] as

w=wpz P4 (27)
where
wo = —k(k + 1)z> k=1,...,n (28)

and that the index polynomial for theh family [22—24] is

k
Qopr(rik)=(r—20—2)[[r +2i —D(r —2i — 21— 2)
i=1

X ﬁ(r—Zj—l)(r—i—Zj—Zn—Z). (29)
j=k+1
For the mKdV hierarchy (14) we have the families [24]
u=upz 4 (30)
with
ug = +kz, k=1 ...,n (31)

and thekth family having the index polynomial [24]

k

Ooia(rik)y = =20 =D [ [ +2i — D(r —2i — 2n)
i=1

< []=2j+D0+2j—2n-2. (32)
j=k+1

Note that the principal familyk( = 1) has positive indices,3,...,2n — 1, and 2 + 1,
2n + 2. This then allows us to understand what the identity (24) tells us about the result
of substituting the truncated Painkexpansion (21) in the mKdV hierarchy (14). The
leading-order behaviour of (14) is~?*?, and the coefficient of this term vanishes due to
our choice of leading-order coefficient. At @+D, we find u, is determined as in (21).
Then the coefficients op=2*, 9=2'*1, ..., ¢~2 all vanish, since these correspond to the
indices 23,...,2n — 1. The coefficient ofp—2, which does not correspond to an index,
then provides the constraissh, 1[¢] = O (see equation (24)). The coefficients¢f® and
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¢°, corresponding to the indices:2- 1 and 2 + 2, then vanish as a consequence of this
constraint; this is what we would usually expect with a truncated Pa&ndsypansion. All
of this follows from the identity (24).

We now find the families and index polynomial of the SKdV hierarchy (15). Considering
the leading-order terms of the Miura map (8) we see that for any family

¢ =0t + - (33)
of the SKdV hierarchy (15) we have

uo=3(p — Dz, (34)
and so

p==+2k+1 k=0,...,n (35)

where in (35) we allowk to run from O ton sinceuo = O is a solution of the polynomial
in uo obtained at leading order from the substitution of (30) into the mKdV hierarchy (14).
We thus obtain the leading-order exponents

p==+(2k—1) k=1,....n (36)
and in addition
p=(2n+1). (37)

However, this last is not a choice of leading-order exponent of the hierarchy (15) but rather
is due to the action of the operatdt(¢) in (19). We thus find that the hierarchy (15) has
the families (33) withp given by (36). Also of course we have the regular solution with

p = 0, but we do not consider this here. Furthermore, the invariance of the SKdV hierarchy
under the action of the Bbius group tells us that, in determining the indices, we only need
to consider the choices

p=—(2k—-1) k=1,....n (38)

corresponding to which we havg = —kz,, k = 1, ..., n. Considering the dominant terms
of (19), and recalling the construction of the index polynomial [22—24], we obtain

— _ —(2k— r—(2%k—
Ky al—kz,z U [goz~® V] @D

zx—1=¢g =0

= U'lpoz” # " V1Kp, palpoz™ @ P~ (39)
zx—1=¢g x =0
which then gives
~ r(r—2k+1) —
. — . 4
Qons1(r; k) r—2n—2k)(r —2n— 1) Q2n+l(r’ k) ( O)
and thus
B k—1 n
Ooia(ril) =0+ D[ +2+D0r -2 —20)[[r —2j + D +2j —20).  (41)
i=1 j=k

This is the index polynomial for theéth family (36) of the nth flow of the SKdV
hierarchy (15).

It is clear from the leading-order behaviours (36), and the fact that the SKdV
hierarchy (15) involves only derivatives ¢f that the quantities

op = x2* 4 A, k=0,1,2,... (42)

where eachy, is constant, are solutions of thg  ;-flows of the SKdV hierarchy for every
n > k. We can also give the following lemma, which will be of practical use later.



Rational solutions for Schwarzian integrable hierarchies 9511

Lemma. The functionsr, defined by
T = xZ+ 4 By k=0,1,2... (43)

where By, is a function of all the flow times, are solutions of the SKdV hierarchy for every
n > k provided that

0By

=0 n>k (44)
0ton41
and (forn = k)
9By k1 ST @A Dk +1) — 1+ D)
22k (DML 2k + 1)2 . 45
Ty~ V@D E D (45)

There are no solutions of the SKdV hierarchy of the form (43)ifot k.
Proof. Noting that

25t | Lz x| = (o ay = 2D (46)
2 x2

and using the recursion relation fb¥, we can show by induction that

! L2 A4+ D[k(k+1) — 11+ D]
2b _E{tk,x}_ = (-1 x_hg T .
This vanishes fon > k, since (43) corresponds to a leading-order behaviour ofghe
flow for k = 0,1,...,n — 1. It then follows that substitution of (43) in theg,,; flow,
n > k, yields the condition (44). In the case= k we substitute (43) in they ., flow
to obtain (45). It is clear that there are no solutions of #he; flows of the form (43)
for n < k since we then obtain thatr,sz"[%{rk; x}] does not vanish and is proportional
to x2¢=" and so cannot balan@B,/d1,,,1. Of course these flows can still have rational
solutions of weight 2 + 1. O

(47)

4. Rational solutions of the SKdV hierarchy

Here we use the results of the previous two sections to derive rational solutions of the
SKdV hierarchy; rational solutions of the mKdV and KdV hierarchies are then obtained
using (Miura) maps. We seek rational solutions of the entire hierarchies, i.e. depending on
all of the flow times. In this way we generalize the results of Weiss [7] and recent results
of Kudryashov [10]. Our approach also has the advantage over that of Weiss in that we
obtain the recursion relation (26) directly, instead of having to first investigate symmetries
of the Schwarzian hierarchy. For the KdV hierarchy the rational solutions we find are of
course those of Adler and Moser [2]; we later use these to shed light on the role played
by lower families in Painle& analysis, and also on that played by negative indices. Later
sections will also see us extend the approach detailed here first to hierarchies of ODEs, and
then to 2+ 1 hierarchies of ‘breaking soliton’ equations.

We derive rational solutions of the SKdV hierarchy (23) using the iterative formula (26)

%

Zk+1lx = (48)

Zk,x
and beginning with the trivial solution

0= X. (49)
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At each step we introduce a function of integratin(zs, ts, t7, .. .) in z;, and we also
renormalize so that; is the quotient of two monic polynonials. The dependenceDpf
on the flow timess, 15, 17, . .. is determined by substitution of the resulting solution into
the SKdV hierarchy. Once we have determined the dependengeasfr,, 1, n < k, the
above lemma can be very useful for fixing its dependence,on for n > k (see below).
Without loss of generality, we do not include constants of integration when solving,for

From equation (48) we obtain = x3+ D;, and from our lemma we see that we must
have

71 =x3+ 123, (50)

lterating again yields, = x° + 60x%; — 7202x~! + D,. Substitution into thes-flow

gives thatd D,/dt3 = 0. We can then seg = 0 in z, and use our lemma to obtain the
condition that in order to be a common solution of the entire SKdV hierarchy we must have
Dy, = —720s5, and so

1
72 = — (x84 60x33 — 7202 — 720x1s). (51)
X
A third iteration gives

23 x4 180v 13 — 5040¢°15 + 302 400:%1315 + 302 40013

- x3+12tg(

— 1209 60@) + D3

and substitution into the andzs flows giveso D3/dt3 = 0 andd D3/dts = 0. Then we can
settz = 15 = 0 in z3 and use our lemma to obtaib; = 100 800;. Thus

= ——————(x*°4 180x 13 — 5040¢°s5 + 100 800:%¢7 + 302 400:?z3t
23 x3+1213(x + 3 5+ 7+ 3ls
+302 40073 + 1 209 6005t7 — 1 209 6062). (52)
A fourth iteration gives
X ZZ
Z4=D4+63/ =3 dx (53)
23,x
where 63 is our normalizing coefficient. Substitution into théow gives
aD
“ — 6350 4002 (54)
0t3
and so
Dy = 2116 806 + D, (55)

for some functionDa(zs, 17, . . .). Substitution into thes andz; flows then gives
dDs

56
3 (56)
and
9D,
T _0. 57
s (57)

We can now set; = 0, 15 = 0 ands; = 0 in z4 and use our lemma to obtain
D4 = —25 401 600. (58)
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This then gives
1

15 12 10 9.2
- + 420¢12t5 — 20 160c1%5 + 25 200%%
X6+ 60x315 — 7202 — 720x15 v ° ° 3

24

+907 200:37 4 907 200 "1315 + 2 116 80a&°73 — 25 401 60G°1g
— 76 204 80@°13t; — 76 204 80@°rZ — 381 024 000*1315

— 254016 0003 — 1 524 096 009°#3t9 + 1 524 096 008375z,

— 4572 288 000%3t; + 4 572 288 00021312 — 1 524 096 0001315
— 18289 152 0092 + 18 289 152 00015ty — 1 524 096 006

418289 152 0069 — 36 578 304 0081517 + 18 289 152 OO@). (59)

In this way we construct rational solutions of the entire SKdV hierarchy, and thus also of
the mKdV and KdV hierarchies. This provides an alternative approach to that of Adler and
Moser [2]. These solutions include as special cases solutions of the form (43), solutions of
the 15,41 flows forn > k. We will see later that the above solutions can also be obtained
as a reduction of those for a breaking soliton hierarchy. In addition, appropriate similarity
reductions of the above lead to rational solutions of thehierarchy. We now consider

the representation of the above solutions using lower families of the hierarchy, and the role
played by negative indices in such representations.

5. Representing rational solutions using lower families

In the previous section we obtained rational solutions of the SKdV hierarchy, and thus also
of the mKdV and KdV hierarchies. The rational solutions of the SKdV hierarchy can all
be written [7] in the form

Py

k= . 60
TR (60)
Rational solutions of the KdV hierarchy are then obtained [2, 7] as

w = 2(l0g Py)xx k=12,... (61)

where the recursion relation for the polynomid#lg(x, 73, 15, . . .) is as given in [2, 7].

In this section we discuss the representation of these rational solutions using the so-
called ‘lower’ families of the KdV hierarchy. Of particular interest is the role played by
negative indices in such representations. We recall from section 3 théathtii@mily of the
KdV hierarchy hast negative indicesy = —(2i — 1), i = 1, ..., k. These lower families
are often regarded as secondary in some sense; we believe that from many points of view
they are in fact just as important as principal families. We note that a thorough discussion of
the singularites of the Kadomtsev—Petviashvili hierarchy was undertaken in [27]. However,
the role played by negative indices does not seem to have been addressed there.

We briefly recall the comments of Newedlt al [25] that eachP; is a weighted
polynomial of degreé(k + 1)/2, and settings =15 = t; = ... = 0 in (61) yields

w = —k(k +1)x2 (62)

i.e. we obtain the leading-order behaviours for the lower families of the KdV hierarchy.
Thus thekth rational solution is seen to unfold the singularity near the coalescence of
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k(k + 1)/2 poles; the fact that equation (62) is no longer a solution of the entire KdV
hierarchy is explained by saying that since the Pailenalysis is local, ‘it does not
particularly care’. This interpretation of lower families as giving a representation of solutions
near a coalescence of singularities is clearly one which requires further, and more careful,
investigation. In what follows we show how these lower families can be used to provide
a representation of the rational solutions; using this representation they remain solutions
of the entire hierarchy. We will also see that this representation allows the inclusion of
arbitrary data corresponding to negative indices.

We illustrate our results using the first three rational solutions of the KdV hierarchy.
The associated polynomials are:

Pl =X (63)
P, = X3 + 12z3 (64)
Pz = x® + 60x%; — 7202 — 72015 (65)

We recall that the corresponding rational solutions are solutions of the entire KdV hierarchy.

The first of these of course gives= —2x~2, which corresponds to the pole expansion
for the first (and principal) family of every member of the hierarchy. Taking the second
rational solution, we expand in descending powers ¢ obtain

w = 2(10g Pp),, = —6x 72 + 28&3x° — 6048Zx 8 + - .. (66)

and thus we see that we are able to use the second family to provide a representation of
this rational solution. For > 1, for which such a family existss is a constant of the
to,+1 flow; this constant represents arbitrary data introduced-at and so corresponds to
the index atr = —3. For these flows, setting = 0 means making a special choice of a
constant in the solution and thus yields the particular soluica —6x—2. Of course this
last is no longer a solution of thg flow since settingz = 0 interferes with the flow time
of this member of the hierarchy. However, the expansion (66) is of course a solution of
every member of the hierarchy, including theflow.

Expanding the third rational solution in descending powers gives

w = 2(10g P3)yx = —12x 72 + 144Q3x > — 43 200sx "+ - - - (67)

and so we obtain a representation of this solution using the third family of the KdV hierarchy.
For n > 2 this is a family of ther,,,; flow, and we have corresponding to the indices at

r = —3 andr = —5 arbitrary constantg and#s. For these flows setting = t5 = 0 then
gives the particular solutiom = —12x—2. However, this is no longer a solution of the

and rs flows, because we have interfered with the flow times. Again the expansion (67)
remains a solution of every member of the hierarchy, includingdtend s flows.

In general, thé&th rational solution has an expansion in descending powergludt can
be identified with thekth family of the KdV hierarchy, with arbitrary data corresponding
to the negative indices= —(2i — 1), i = 2, ..., k. In this way we obtain a representation
for the full rational solutions, and not just for the particular cases (62). We recall also the
results of [26, 22], where a connection was established between negative resonances and the
presence of lower order commuting flows. We note that arbitrary data=at-1 is trivially
included in the above descending series solutions by shiftingd then re-expanding.

We note from (41) that the negative index structure of the families of the SKdV hierarchy
is the same as that of the families of the mKdV and KdV hierarchies. We can see from
equations (50), (51), (52) and (59) that the representatian,ab, zz andz4 by descending
series solutions will lead to similar conclusions to those presented above for the KdV
hierarchy.
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6. Application to ODEs: the B, hierarchy

In this section we consider very briefly the application of our approach to hierarchies of
ODEs, namely the Phierarchy [11-13] and a Schwarziap Rierarchy introduced here.
This allows us to derive a new alternative form for th&cBlund transformation for the,P
hierarchy. We begin with the SKdV hierarchy (15), and we make the similarity reduction

o, 12041) = [(210 + Diggea]™ @y (X)X = x[(21 + Digya] V&Y (68)
wherem,, is a constant; this then yields the Schwarzian hierarchy
myy — X'+ 29'0"[5{y: X}] = 0. (69)

We note that withm,, = 0 and the substitutiod” = %{1//; X}, this last is the sequence of
first Painlewe equations of higher order given in [13].
Under the action of the operato¢’)~1d/dX, the sequence of ODEs (69) becomes

d
— 2V | [V =V - XV -, =0 70
(g¢ +2v)o1v'=va-xv - (70)
where we have made the substitution= (v")/(2y’), and we have set, = (1 —m,)/2.
The sequence of ODEs (70) is the hierarchy of higher-orgezdRations [11-13]. We now
consider the iteration which corresponds to our iteragipr> ¢,.1 of the SKdV hierarchy.
We take

o = [(21 + Digya]™ @Dy (X) (71)
and
Pea1 = [(2n + Dz a] "/ @09 1(X). (72)
The iterative formula
(,02
Qk1x = (73)
Dk, x
then yields
2
M, =m, +2 and Vi =~ (74)

Vi

Note thatM, = m, + 2 corresponds te"" = %9 — 1. This shift one, can be
understood by recalling that the iteration (73) was derived by sending —1/¢ in
(8) to obtain (21), and then sending— —u to obtain (22); mirroring this sequence of
transformations fory and V then gives the above shift am,. Thus we have derived a
very simple (although somewhat implicit) form for theag&klund transformation for the
Py hierarchy [11]. This shift ony, and the mapping (74) were in fact obtained fqr P
itself in [14]. However, the approach in [14] involved the direct consideration of additional
symmetries of (69) (for = 1).

A derivation of the Bcklund transformation for the,Phierarchy (in the form given
in [11]) can be found in [28]; this derivation uses a new extension of the Pé&ittaucation
approach. For the special case= 2, the Backlund transformation in the form presented
in [11] has also been given in [29] and [30].

Beginning with the solutiony = X for m, = 1 (corresponding t&/ = 0 for «, = 0),
and using also the symmet(, a,) — (—V, —a,), we are able to use the iteration (74)
to construct rational solutions for the, Bhierarchy. Taking each equation separately, we
obtain a sequence of solutions for that equation, one for every integer vadye At each
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step we again renormalize so thitis the quotient of two monic polynonials. Also at each
step we introduce a constant of integration which is fixed by substitution back into (69).
The resulting rational solutions can all be found by appropriate similarity reduction of the
rational solutions derived earlier for the SKdV and mKdV hierarchies, and so we do not
give them explicitly here.

7. A 2+1 Schwarzian breaking soliton hierarchy

In this section we apply our approach to a hierarchy of ‘breaking soliton’ equations i 2
dimensions [15-17]

Wy, g T Rnwy =0 n=0,1,... (75)

whereR is as in (6), which has as its first non-trivial flow an equation due to Calogero [15]
(discussed in detail by Bogoyavlenskii [31]; see also Schiff [32])

Wp; + Wxxy + dowy + waagla)y =0. (76)

From equations (9) and (11) it is clear that the Miura maps (7) and (8) respectively give a
modified breaking soliton hierarchy

Uiy, +R'uy =0 n=01,... (77)
whereR is as in (10), and a Schwarzian breaking soliton hierarchy

Gy + R0y =0 n=0,1,... (78)
whereR is as in (12). We note that the hierarchy (77) does not seem to have been written
down before, although the first non-trivial member

Upy + Uyry — 4u2uy - 4ux8;1(uuy) =0 (79)

does appear in [31]. The hierarchy (78) also appears to be new; its first non-trivial flow
can be written as

O, + wxa;lay{go; x}=0. (80)

This last is the singular manifold equation of both (76) and (79) for zero value of the spectral
parametet.(y, t) appearing in the corresponding non-isospectral scattering problems.

It is easy to see that equation (77) is invariant under> —u. We can also show
formally that the hierarchy (78) is invariant under the action of thibMs group. We first
rewrite the hierarchy (78) as

E2n11[9] = @15,45 + @x Foriale] =0 (81)
where

Fopqalg] = T" ' F3[g] (82)
andT is the operator

T = 0, 0x 050y 00 T05 0 (83)
and

F3=3.9,{p; x}. (84)

It is then simple matter to show that i is invariant under the Kibius group then so is
TF (up to the non-locality due to the integration ). Then sinceF; is invariant so is
any Fy,+1 and thus any member of the hierarchy, ;1 = 0.
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We now apply our approach to the breaking soliton hierarchies given above. We give our
results in terms of solutions of the hierarchy (75). These solutions are all new. For reasons
of space we confine ourselves here to considering only the first three common solutions. At
each step we again renormalize and introduce a function of integration whose dependence
on the flow times is determined by substitution into the hierarchy. These functions of
integration depend also on and so the solutions we obtain are rationalxirand ¢ but
also involve arbitrary functions of. Special choices of these functions allow us to make
a reduction of the solutions obtained to those obtained earlier for the KdV hierarchy.

For the hierarchy (75), the solutions we obtain can be written as

w=2(ogFP),, - (85)
The first three polynomial#®; we obtain are
Pr=x+ f(y) (86)
Py =[x+ fODI +12[f (13 + g ()] (87)

Py =[x+ fM]®+60[x + fODI3[f itz + g(»)] — 720[f' )tz + g()]?
+360[x + fWILf"(Mtz + 28" (0)]t3

—720[x + fO)ILf (D)t + h(Y)] (88)

where f(y), g(y) andh(y) are arbitrary functions of. The KdV hierarchy arises as the
reductiond, = 9, of (75) and accordingly the solutions of the KdV hierarchy corresponding
to (61) and (63), (64), (65) are obtained from equations (85) and (86), (87), (88) above by
choosing f(y) = y, and g(y), h(y) both constant. It is clear that our earlier results on
negative indices and the representation of solutions using lower families hold for these
breaking soliton hierarchies also.

8. Conclusions

The recent work of Kudryashov simplified the earlier approach of Weiss to the question of
obtaining rational solutions. Here, by exploring the link between Miura maps and truncated
Painlee expansions, we have extended this work of Kudryashov, and thus also that of
Weiss, in order to derive rational solutions of every member (simultaneously) of a hierarchy.
This then gives an alternative approach, based on the use of corresponding Schwarzian
hierarchies, to the construction of such solutions.

We have used our knowledge of the indices for every family of every flow of the
mKdV hierarchy to understand what our mapping from the SKdV hierarchy to the mKdV
hierarchy is telling us about the results of using a truncated P&ndgapansion for the
mKdV hierarchy. We have also obtained a closed form for the index polynomial of every
family of every flow of the SKdV hierarchy.

We have given a representation of the rational solutions obtained for the KdV hierarchy
using lower families of the hierarchy. Using this representation allows the rational solutions
to remain solutions of every flow of the hierarchy. Also in this representation we have seen
the inclusion of arbitrary data corresponding to negative indices.

We have used the approach outlined here to derive an alternative form foatkéuBd
transformation for the Phierarchy, and also to find new solutions for a hierarchy of breaking
soliton equations in 2 1 dimensions. We have also given for the first time a Schwarzian
version of this breaking soliton hierarchy.
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