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Abstract. We give an approach to finding rational solutions of completely intagrable
hierarchies, which makes use of the relationship between modifications and the Schwarzian
equations obtained via the singular manifold method. This extends the recent work of
Kudryashov, which allowed a simple derivation of the iteration used to construct sequences
of such solutions. We also give a closed form for the index polynomial of the Schwarzian
Korteweg–de Vries hierarchy.

In addition we consider the representation of rational solutions using lower families of the
hierarchy. We give a simple representation under which the rational solutions remain solutions
of every flow of the hierarchy. This representation also allows the inclusion of arbitrary data
corresponding to negative indices.

We use our method to derive an alternative form of the Bäcklund transformation for the
hierarchy of the second Painlevé equation, as well as new solutions of a hierarchy of breaking
soliton equations. We also present here for the first time a Schwarzian version of this breaking
soliton hierarchy.

1. Introduction

Rational solutions of integrable hierarchies have proved to be of interest to many workers
over the years. The first to obtain such solutions for the Korteweg–de Vries (KdV) equation
were Airault, McKean and Moser [1]; this was followed by the work of Adler and Moser [2],
and Ablowitz and Satsuma [3, 4]. Weiss later showed how the singular manifold method [5],
based on truncating the Weiss–Tabor–Carnevale (WTC) Painlevé expansion [6], could
also be used to obtain rational solutions [7, 8] (for the KdV and Boussinesq equations,
respectively). More recent approaches to this problem can be found in [9] and references
therein.

The approach of Weiss involved finding and using invariances of the singular manifold
equations in order to obtain a recursion relation for the iterative construction of rational
solutions. In a recent paper [10] one of the authors of the present paper showed that
this iterative formula could be much more simply obtained by considering, for modified
equations, a double iteration of the Weiss truncation. In the current work we are interested in
further extending this approach, and so also that of Weiss, in order to allow the construction
of rational solutions for every member of a hierarchy of completely integrable partial
differential equations (PDEs). For the KdV hierarchy, for example, this then provides
an alternative means of deriving the solutions of Adler and Moser [2].
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9506 N A Kudryashov and A Pickering

The approach developed here involves understanding the connection between truncated
Painlev́e expansions and Miura maps, i.e. between the Schwarzian equations obtained via
truncation and modified equations. The solutions we construct are in fact solutions of the
corresponding Schwarzian hierarchies; solutions of the original hierarchy and others are then
obtained using maps from the Schwarzian hierarchy. We also show how to derive a closed
form for the index (resonance) polynomial of any family of any flow of the Schwarzian
KdV (SKdV) hierarchy.

Such closed forms for the index polynomial of any family of any flow of a hierarchy
are useful when it comes to understanding what happens when we use a truncated Painlevé
expansion. They are also useful when we want to give an interpretation of the representation
of rational solutions using ‘lower’ families, i.e. those whose standard Painlevé expansions
have less than the full complement of arbitrary data. We later give a means of representing
the rational solutions of the KdV hierarchy (simultaneously solutions of every flow) using
such lower families; these representations include arbitrary data corresponding to negative
indices.

The application of our approach to the hierarchy of the second Painlevé equation
(PII ) [11–13] allows us to derive a new and very simple form of the Bäcklund transformation
for that hierarchy [11]. This generalizes the results of Weiss [14] for PII itself. Further new
results are obtained through our consideration of a hierarchy of ‘breaking soliton’ equations
in 2 + 1 dimensions [15–17]. We give here for the first time a Schwarzian version of
this hierarchy, and then use our approach to derive new solutions of this hierarchy. These
solutions are rational inx and t and include arbitrary functions ofy; suitable choices of
these functions reduce these solutions to the rational solutions of the KdV hierarchy, which
is a (1+ 1)-dimensional reduction of the 2+ 1 hierarchy.

The paper is organized as follows. In section 2 we explore the relationship between
Miura maps and truncated Painlevé expansions, and we show how the iterative formula for
the generation of sequences of rational solutions can be derived from a double iteration of
the constant-level truncation. In section 3 we obtain the families and index polynomial of
the SKdV hierarchy. We also consider the result of seeking a truncated Painlevé expansion
for the modified KdV (mKdV) hierarchy. A simple lemma is given which proves useful in
section 4, which is where we derive rational solutions of the SKdV hierarchy. In section 5
we discuss the representation of solutions of the KdV (and SKdV) hierarchy using lower
families. In section 6 we consider the application of our techniques to the PII hierarchy.
Section 7 sees the extension of our techniques to breaking soliton equations in 2+ 1
dimensions. Section 8 is devoted to a summing up of our results and conclusions.

2. Muira maps and Painlev́e truncation

Given two differential equations, say

D[u] = 0 (1)

and

E[z] = 0 (2)

we say that we have a map of equation (2) into (1) if we have a differential substitution of
the form

u = F [z, zx, . . .] (3)
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such that for some differential operator̂C

D[u] = ĈE[z]. (4)

Differential substitutions of the form (3) map solutions of (2) into solutions of (1);
examples of such maps include Miura maps, linearizing transformations such as the Cole–
Hopf transformation, and truncated Painlevé expansions. Here we will be interested in
the connections between Miura maps and truncated Painlevé expansions, that is, between
modified equations and singular manifold equations. We will see how such connections can
be useful in deriving rational solutions.

Let us take the KdV hierarchy in the form

ωt2n+1 +Rnωx = ωt2n+1 +K2n+1[ω] = ωt2n+1 + ∂xbn+1[ω] = 0 n = 0, 1, . . . (5)

where∂x = ∂/∂x (similarly in what follows for∂y , etc) and the recursion operatorR is
given [18] by

R = ∂2
x + 4ω + 2ωx∂

−1
x (6)

and let us consider the two successive modifications

ω = �[u] = ux − u2 (7)

and

u = U [ϕ] = 1

2

(
ϕxx

ϕx

)
. (8)

Then of course we have the well known relations

R�′[u]
∣∣∣
ω=�[u]

= �′[u]R (9)

where

R = ∂2
x − 4u2− 4ux∂

−1
x u (10)

and

RU ′[ϕ]
∣∣∣
u=U [ϕ]

= U ′[ϕ]R̃ (11)

where

R̃ = ϕx∂−1
x ϕx∂xϕ

−1
x ∂xϕ

−1
x ∂x (12)

and�′[u] andU ′[ϕ] denote the Fŕechet derivatives of�[u] andU [ϕ] respectively:

�′[u] = ∂x − 2u U ′[ϕ] = 1
2∂xϕ

−1
x ∂x. (13)

We then obtain the mKdV and SKdV hierarchies as

ut2n+1 +R
n
ux = ut2n+1 +K2n+1[u] = ut2n+1 + ∂x (∂x + 2u) bn[ux − u2] = 0

n = 0, 1, . . . (14)

and

ϕt2n+1 + R̃nϕx = ϕt2n+1 + K̃2n+1[ϕ] = ϕt2n+1 + 2ϕxb
n
[

1
2{ϕ; x}

] = 0 n = 0, 1, . . . (15)

respectively, where in (15){ϕ; x} denotes the Schwarzian derivative ofϕ

{ϕ; x} =
(
ϕxx

ϕx

)
x

− 1

2

(
ϕxx

ϕx

)2

(16)
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introduced through the composition of (7) and (8)

ω = ux − u2 = 1
2{ϕ; x}. (17)

Corresponding to equation (4) we of course have the relations

ωt2n+1 +K2n+1[ω] = �′[u]
(
ut2n+1 +K2n+1[u]

)
(18)

and

ut2n+1 +K2n+1[u] = U ′[ϕ]
(
ϕt2n+1 + K̃2n+1[ϕ]

)
. (19)

It is the SKdV hierarchy that we will use to generate rational solutions of the mKdV and
KdV hierarchies. The mKdV and KdV hierarchies have the same sequence of singular
manifold equations (see [19] for definitions) and for zero value of the spectral parameter
this sequence becomes precisely the SKdV hierarchy (15). The connection between Miura
maps and truncated Painlevé expansions can be seen using the invariance of the SKdV
hierarchy under the M̈obius group; sendingϕ→−1/ϕ gives

u = −ϕx
ϕ
+ 1

2

(
ϕxx

ϕx

)
(20)

is a solution of the mKdV hierarchy provided that equation (15) holds. Given that (8) is also
a solution of the mKdV hierarchy we see that (20) defines an auto-Bäcklund transformation
between two solutionsu andu1 of the mKdV hierarchy as

u = −ϕx
ϕ
+ u1 u1 = 1

2

(
ϕxx

ϕx

)
. (21)

The invariance of the mKdV hierarchy underu→ −u then gives a second auto-Bäcklund
transformation between two solutionsv andv1 as

v = zx

z
+ v1 v1 = −1

2

(
zxx

zx

)
(22)

for any solutionz of

S2n+1[z] ≡ zt2n+1 + 2zxb
n
[

1
2{z; x}

] = 0. (23)

Expressions (21) and (22) are of course the Painlevé expansions for the principal families
of the mKdV hierarchy truncated at constant level. From equation (19) we find that
corresponding to (20) we have the relation

ut2n+1 +K2n+1[u] = 1

2
∂x

(
1

ϕx
∂x − 2

ϕ

)
S2n+1[ϕ] (24)

which gives precisely the same result as substituting the truncated Painlevé expansion (21)
in the mKdV hierarchy (see section 3), and similarly for the truncation (22).

Following the approach in [10] we perform a double iteration of this constant-level
truncation and identifyu1 = v to obtain

ϕx = z2

zx
(25)

which is the formula used by Weiss to obtain rational solutions of the KdV equation. This
formula allows the iterative construction of solutions of (23) via

zk+1,x = z2
k

zk,x
. (26)

This double iteration of the Weiss auto-Bäcklund transformation makes use of the two
principal families of the mKdV hierarchy and greatly simplifies the derivation of the iterative
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formula (26). Being a double iteration of the constant-level truncation, this approach is
different from those based on the use of two singular manifolds [20, 21]; recall that the
equations that we are using here are the singular manifold equations of the mKdV hierarchy
for zero value of the spectral parameter, i.e. they are those found using the Weiss constant-
level truncation.

3. Families and indices of the SKdV hierarchy

In [22] we gave a closed form for the Painlevé index polynomial of any family of any flow
of the KdV hierarchy; the proof was presented in [23]. We then showed [24] how the Muira
map (7) could be used to obtain the families and index polynomial for the mKdV hierarchy.
We now use the Miura map (8) to obtain the families and index polynomial for the SKdV
hierarchy (15). Use will be made of these results later.

Let us recall that in the application of the WTC Painlevé test to the KdV hierarchy (5),
the families are given [22–26] as

ω = ω0z
−2+ · · · (27)

where

ω0 = −k(k + 1)z2
x k = 1, . . . , n (28)

and that the index polynomial for thekth family [22–24] is

Q2n+1(r; k) = (r − 2n− 2)
k∏
i=1

(r + 2i − 1)(r − 2i − 2n− 2)

×
n∏

j=k+1

(r − 2j − 1)(r + 2j − 2n− 2). (29)

For the mKdV hierarchy (14) we have the families [24]

u = u0z
−1+ · · · (30)

with

u0 = ±kzx k = 1, . . . , n (31)

and thekth family having the index polynomial [24]

Q2n+1(r; k) = (r − 2n− 1)
k∏
i=1

(r + 2i − 1)(r − 2i − 2n)

×
n∏

j=k+1

(r − 2j + 1)(r + 2j − 2n− 2). (32)

Note that the principal family (k = 1) has positive indices 2, 3, . . . ,2n − 1, and 2n + 1,
2n + 2. This then allows us to understand what the identity (24) tells us about the result
of substituting the truncated Painlevé expansion (21) in the mKdV hierarchy (14). The
leading-order behaviour of (14) isϕ−(2n+2), and the coefficient of this term vanishes due to
our choice of leading-order coefficient. Atϕ−(2n+1), we find u1 is determined as in (21).
Then the coefficients ofϕ−2n, ϕ−2n+1, . . . , ϕ−3 all vanish, since these correspond to the
indices 2, 3, . . . ,2n − 1. The coefficient ofϕ−2, which does not correspond to an index,
then provides the constraintS2n+1[ϕ] = 0 (see equation (24)). The coefficients ofϕ−1 and
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ϕ0, corresponding to the indices 2n + 1 and 2n + 2, then vanish as a consequence of this
constraint; this is what we would usually expect with a truncated Painlevé expansion. All
of this follows from the identity (24).

We now find the families and index polynomial of the SKdV hierarchy (15). Considering
the leading-order terms of the Miura map (8) we see that for any family

ϕ = ϕ0z
p + · · · (33)

of the SKdV hierarchy (15) we have

u0 = 1
2(p − 1)zx (34)

and so

p = ±2k + 1 k = 0, . . . , n (35)

where in (35) we allowk to run from 0 ton sinceu0 = 0 is a solution of the polynomial
in u0 obtained at leading order from the substitution of (30) into the mKdV hierarchy (14).
We thus obtain the leading-order exponents

p = ±(2k − 1) k = 1, . . . , n (36)

and in addition

p = (2n+ 1). (37)

However, this last is not a choice of leading-order exponent of the hierarchy (15) but rather
is due to the action of the operatorU ′(ϕ) in (19). We thus find that the hierarchy (15) has
the families (33) withp given by (36). Also of course we have the regular solution with
p = 0, but we do not consider this here. Furthermore, the invariance of the SKdV hierarchy
under the action of the M̈obius group tells us that, in determining the indices, we only need
to consider the choices

p = −(2k − 1) k = 1, . . . , n (38)

corresponding to which we haveu0 = −kzx , k = 1, . . . , n. Considering the dominant terms
of (19), and recalling the construction of the index polynomial [22–24], we obtain

K
′
2n+1[−kzxz−1]U ′[ϕ0z

−(2k−1)]zr−(2k−1)
∣∣
zx−1=ϕ0,x=0

= U ′[ϕ0z
−(2k−1)]K̃ ′2n+1[ϕ0z

−(2k−1)]zr−(2k−1)
∣∣
zx−1=ϕ0,x=0

(39)

which then gives

Q̃2n+1(r; k) = r(r − 2k + 1)

(r − 2n− 2k)(r − 2n− 1)
Q2n+1(r; k) (40)

and thus

Q̃2n+1(r; k) = (r + 1)
k−1∏
i=1

(r + 2i + 1)(r − 2i − 2n)
n∏
j=k
(r − 2j + 1)(r + 2j − 2n). (41)

This is the index polynomial for thekth family (36) of the nth flow of the SKdV
hierarchy (15).

It is clear from the leading-order behaviours (36), and the fact that the SKdV
hierarchy (15) involves only derivatives ofϕ, that the quantities

σk = x2k+1+ Ak k = 0, 1, 2, . . . (42)

where eachAk is constant, are solutions of thet2n+1-flows of the SKdV hierarchy for every
n > k. We can also give the following lemma, which will be of practical use later.
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Lemma. The functionsτk defined by

τk = x2k+1+ Bk k = 0, 1, 2 . . . (43)

whereBk is a function of all the flow times, are solutions of the SKdV hierarchy for every
n > k provided that

∂Bk

∂t2n+1
= 0 n > k (44)

and (forn = k)

∂Bk

∂t2k+1
= (−1)k+1(2k + 1)2k

k−1∏
l=0

(2l + 1) [k (k + 1)− l (l + 1)]

(l + 1)
. (45)

There are no solutions of the SKdV hierarchy of the form (43) forn < k.

Proof. Noting that

2b1

[
1

2
{τk; x}

]
= {τk; x} = −2k(k + 1)

x2
(46)

and using the recursion relation forbn, we can show by induction that

2bn
[

1

2
{τk; x}

]
= (−1)n

2n

x2n

n−1∏
l=0

(2l + 1) [k (k + 1)− l (l + 1)]

(l + 1)
. (47)

This vanishes forn > k, since (43) corresponds to a leading-order behaviour of thet2n+1

flow for k = 0, 1, . . . , n − 1. It then follows that substitution of (43) in thet2n+1 flow,
n > k, yields the condition (44). In the casen = k we substitute (43) in thet2k+1 flow
to obtain (45). It is clear that there are no solutions of thet2n+1 flows of the form (43)
for n < k since we then obtain that 2τk,xbn[ 1

2{τk; x}] does not vanish and is proportional
to x2(k−n), and so cannot balance∂Bk/∂t2n+1. Of course these flows can still have rational
solutions of weight 2k + 1. �

4. Rational solutions of the SKdV hierarchy

Here we use the results of the previous two sections to derive rational solutions of the
SKdV hierarchy; rational solutions of the mKdV and KdV hierarchies are then obtained
using (Miura) maps. We seek rational solutions of the entire hierarchies, i.e. depending on
all of the flow times. In this way we generalize the results of Weiss [7] and recent results
of Kudryashov [10]. Our approach also has the advantage over that of Weiss in that we
obtain the recursion relation (26) directly, instead of having to first investigate symmetries
of the Schwarzian hierarchy. For the KdV hierarchy the rational solutions we find are of
course those of Adler and Moser [2]; we later use these to shed light on the role played
by lower families in Painlev́e analysis, and also on that played by negative indices. Later
sections will also see us extend the approach detailed here first to hierarchies of ODEs, and
then to 2+ 1 hierarchies of ‘breaking soliton’ equations.

We derive rational solutions of the SKdV hierarchy (23) using the iterative formula (26)

zk+1,x = z2
k

zk,x
(48)

and beginning with the trivial solution

z0 = x. (49)
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At each step we introduce a function of integrationDk(t3, t5, t7, . . .) in zk, and we also
renormalize so thatzk is the quotient of two monic polynonials. The dependence ofDk

on the flow timest3, t5, t7, . . . is determined by substitution of the resulting solution into
the SKdV hierarchy. Once we have determined the dependence ofzk on t2n+1, n < k, the
above lemma can be very useful for fixing its dependence ont2n+1 for n > k (see below).
Without loss of generality, we do not include constants of integration when solving forDk.

From equation (48) we obtainz1 = x3+D1, and from our lemma we see that we must
have

z1 = x3+ 12t3. (50)

Iterating again yieldsz2 = x5 + 60x2t3 − 720t23x
−1 + D2. Substitution into thet3-flow

gives that∂D2/∂t3 = 0. We can then sett3 = 0 in z2 and use our lemma to obtain the
condition that in order to be a common solution of the entire SKdV hierarchy we must have
D2 = −720t5, and so

z2 = 1

x
(x6+ 60x3t3− 720t23 − 720xt5). (51)

A third iteration gives

z3 = 1

x3+ 12t3

(
x10+ 180x7t3− 5040x5t5+ 302 400x2t3t5+ 302 400xt33

− 1 209 600t25
)+D3

and substitution into thet3 andt5 flows gives∂D3/∂t3 = 0 and∂D3/∂t5 = 0. Then we can
set t3 = t5 = 0 in z3 and use our lemma to obtainD3 = 100 800t7. Thus

z3 = 1

x3+ 12t3

(
x10+ 180x7t3− 5040x5t5+ 100 800x3t7+ 302 400x2t3t5

+ 302 400xt33 + 1 209 600t3t7− 1 209 600t25
)
. (52)

A fourth iteration gives

z4 = D4+ 63
∫ x z2

3

z3,x
dx (53)

where 63 is our normalizing coefficient. Substitution into thet3 flow gives

∂D4

∂t3
= 6 350 400t23 (54)

and so

D4 = 2 116 800t33 + D̃4 (55)

for some functionD̃4(t5, t7, . . .). Substitution into thet5 and t7 flows then gives

∂D̃4

∂t5
= 0 (56)

and

∂D̃4

∂t7
= 0. (57)

We can now sett3 = 0, t5 = 0 andt7 = 0 in z4 and use our lemma to obtain

D̃4 = −25 401 600t9. (58)
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This then gives

z4 = 1

x6+ 60x3t3− 720t23 − 720xt5

(
x15+ 420x12t3− 20 160x10t5+ 25 200x9t23

+ 907 200x8t7+ 907 200x7t3t5+ 2 116 800x6t33 − 25 401 600x6t9

− 76 204 800x5t3t7− 76 204 800x5t25 − 381 024 000x4t23 t5

− 254 016 000x3t43 − 1 524 096 000x3t3t9+ 1 524 096 000x3t5t7

− 4 572 288 000x2t23 t7+ 4 572 288 000x2t3t
2
5 − 1 524 096 000xt33 t5

− 18 289 152 000xt27 + 18 289 152 000xt5t9− 1 524 096 000t53

+ 18 289 152 000t23 t9− 36 578 304 000t3t5t7+ 18 289 152 000t35
)
. (59)

In this way we construct rational solutions of the entire SKdV hierarchy, and thus also of
the mKdV and KdV hierarchies. This provides an alternative approach to that of Adler and
Moser [2]. These solutions include as special cases solutions of the form (43), solutions of
the t2n+1 flows for n > k. We will see later that the above solutions can also be obtained
as a reduction of those for a breaking soliton hierarchy. In addition, appropriate similarity
reductions of the above lead to rational solutions of the PII hierarchy. We now consider
the representation of the above solutions using lower families of the hierarchy, and the role
played by negative indices in such representations.

5. Representing rational solutions using lower families

In the previous section we obtained rational solutions of the SKdV hierarchy, and thus also
of the mKdV and KdV hierarchies. The rational solutions of the SKdV hierarchy can all
be written [7] in the form

zk = Pk+1

Pk−1
. (60)

Rational solutions of the KdV hierarchy are then obtained [2, 7] as

ω = 2(logPk)xx k = 1, 2, . . . (61)

where the recursion relation for the polynomialsPk(x, t3, t5, . . .) is as given in [2, 7].
In this section we discuss the representation of these rational solutions using the so-

called ‘lower’ families of the KdV hierarchy. Of particular interest is the role played by
negative indices in such representations. We recall from section 3 that thekth family of the
KdV hierarchy hask negative indices,r = −(2i − 1), i = 1, . . . , k. These lower families
are often regarded as secondary in some sense; we believe that from many points of view
they are in fact just as important as principal families. We note that a thorough discussion of
the singularites of the Kadomtsev–Petviashvili hierarchy was undertaken in [27]. However,
the role played by negative indices does not seem to have been addressed there.

We briefly recall the comments of Newellet al [25] that eachPk is a weighted
polynomial of degreek(k + 1)/2, and settingt3 = t5 = t7 = . . . = 0 in (61) yields

ω = −k(k + 1)x−2 (62)

i.e. we obtain the leading-order behaviours for the lower families of the KdV hierarchy.
Thus thekth rational solution is seen to unfold the singularity near the coalescence of
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k(k + 1)/2 poles; the fact that equation (62) is no longer a solution of the entire KdV
hierarchy is explained by saying that since the Painlevé analysis is local, ‘it does not
particularly care’. This interpretation of lower families as giving a representation of solutions
near a coalescence of singularities is clearly one which requires further, and more careful,
investigation. In what follows we show how these lower families can be used to provide
a representation of the rational solutions; using this representation they remain solutions
of the entire hierarchy. We will also see that this representation allows the inclusion of
arbitrary data corresponding to negative indices.

We illustrate our results using the first three rational solutions of the KdV hierarchy.
The associated polynomials are:

P1 = x (63)

P2 = x3+ 12t3 (64)

P3 = x6+ 60x3t3− 720t23 − 720xt5. (65)

We recall that the corresponding rational solutions are solutions of the entire KdV hierarchy.
The first of these of course givesω = −2x−2, which corresponds to the pole expansion

for the first (and principal) family of every member of the hierarchy. Taking the second
rational solution, we expand in descending powers ofx to obtain

ω = 2(logP2)xx = −6x−2+ 288t3x
−5− 6048t23x

−8+ · · · (66)

and thus we see that we are able to use the second family to provide a representation of
this rational solution. Forn > 1, for which such a family exists,t3 is a constant of the
t2n+1 flow; this constant represents arbitrary data introduced atx−5, and so corresponds to
the index atr = −3. For these flows, settingt3 = 0 means making a special choice of a
constant in the solution and thus yields the particular solutionω = −6x−2. Of course this
last is no longer a solution of thet3 flow since settingt3 = 0 interferes with the flow time
of this member of the hierarchy. However, the expansion (66) is of course a solution of
every member of the hierarchy, including thet3 flow.

Expanding the third rational solution in descending powers ofx gives

ω = 2(logP3)xx = −12x−2+ 1440t3x
−5− 43 200t5x

−7+ · · · (67)

and so we obtain a representation of this solution using the third family of the KdV hierarchy.
For n > 2 this is a family of thet2n+1 flow, and we have corresponding to the indices at
r = −3 andr = −5 arbitrary constantst3 and t5. For these flows settingt3 = t5 = 0 then
gives the particular solutionω = −12x−2. However, this is no longer a solution of thet3
and t5 flows, because we have interfered with the flow times. Again the expansion (67)
remains a solution of every member of the hierarchy, including thet3 and t5 flows.

In general, thekth rational solution has an expansion in descending powers ofx that can
be identified with thekth family of the KdV hierarchy, with arbitrary data corresponding
to the negative indicesr = −(2i − 1), i = 2, . . . , k. In this way we obtain a representation
for the full rational solutions, and not just for the particular cases (62). We recall also the
results of [26, 22], where a connection was established between negative resonances and the
presence of lower order commuting flows. We note that arbitrary data atr = −1 is trivially
included in the above descending series solutions by shiftingx and then re-expanding.

We note from (41) that the negative index structure of the families of the SKdV hierarchy
is the same as that of the families of the mKdV and KdV hierarchies. We can see from
equations (50), (51), (52) and (59) that the representation ofz1, z2, z3 andz4 by descending
series solutions will lead to similar conclusions to those presented above for the KdV
hierarchy.
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6. Application to ODEs: the PII hierarchy

In this section we consider very briefly the application of our approach to hierarchies of
ODEs, namely the PII hierarchy [11–13] and a Schwarzian PII hierarchy introduced here.
This allows us to derive a new alternative form for the Bäcklund transformation for the PII

hierarchy. We begin with the SKdV hierarchy (15), and we make the similarity reduction

ϕ(x, t2n+1) = [(2n+ 1)t2n+1]mn/(2n+1)ψ(X) X = x[(2n+ 1)t2n+1]−1/(2n+1) (68)

wheremn is a constant; this then yields the Schwarzian hierarchy

mnψ −Xψ ′ + 2ψ ′bn
[

1
2{ψ;X}

] = 0. (69)

We note that withmn = 0 and the substitutionF = 1
2{ψ;X}, this last is the sequence of

first Painlev́e equations of higher order given in [13].
Under the action of the operator(ψ ′)−1d/dX, the sequence of ODEs (69) becomes(

d

dX
+ 2V

)
bn[V ′ − V 2] −XV − αn = 0 (70)

where we have made the substitutionV = (ψ ′′)/(2ψ ′), and we have setαn = (1−mn)/2.
The sequence of ODEs (70) is the hierarchy of higher-order PII equations [11–13]. We now
consider the iteration which corresponds to our iterationϕk → ϕk+1 of the SKdV hierarchy.
We take

ϕk = [(2n+ 1)t2n+1]mn/(2n+1)ψk(X) (71)

and

ϕk+1 = [(2n+ 1)t2n+1]Mn/(2n+1)ψk+1(X). (72)

The iterative formula

ϕk+1,x = ϕ2
k

ϕk,x
(73)

then yields

Mn = mn + 2 and ψ ′k+1 =
ψ2
k

ψ ′k
. (74)

Note thatMn = mn + 2 corresponds toαnew
n = αold

n − 1. This shift onαn can be
understood by recalling that the iteration (73) was derived by sendingϕ → −1/ϕ in
(8) to obtain (21), and then sendingu → −u to obtain (22); mirroring this sequence of
transformations forψ andV then gives the above shift onαn. Thus we have derived a
very simple (although somewhat implicit) form for the Bäcklund transformation for the
PII hierarchy [11]. This shift onαn and the mapping (74) were in fact obtained for PII

itself in [14]. However, the approach in [14] involved the direct consideration of additional
symmetries of (69) (forn = 1).

A derivation of the B̈acklund transformation for the PII hierarchy (in the form given
in [11]) can be found in [28]; this derivation uses a new extension of the Painlevé truncation
approach. For the special casen = 2, the B̈acklund transformation in the form presented
in [11] has also been given in [29] and [30].

Beginning with the solutionψ = X for mn = 1 (corresponding toV = 0 for αn = 0),
and using also the symmetry(V , αn) → (−V,−αn), we are able to use the iteration (74)
to construct rational solutions for the PII hierarchy. Taking each equation separately, we
obtain a sequence of solutions for that equation, one for every integer value ofαn. At each
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step we again renormalize so thatψ is the quotient of two monic polynonials. Also at each
step we introduce a constant of integration which is fixed by substitution back into (69).
The resulting rational solutions can all be found by appropriate similarity reduction of the
rational solutions derived earlier for the SKdV and mKdV hierarchies, and so we do not
give them explicitly here.

7. A 2+1 Schwarzian breaking soliton hierarchy

In this section we apply our approach to a hierarchy of ‘breaking soliton’ equations in 2+1
dimensions [15–17]

ωt2n+1 +Rnωy = 0 n = 0, 1, . . . (75)

whereR is as in (6), which has as its first non-trivial flow an equation due to Calogero [15]
(discussed in detail by Bogoyavlenskii [31]; see also Schiff [32])

ωt3 + ωxxy + 4ωωy + 2ωx∂
−1
x ωy = 0. (76)

From equations (9) and (11) it is clear that the Miura maps (7) and (8) respectively give a
modified breaking soliton hierarchy

ut2n+1 +R
n
uy = 0 n = 0, 1, . . . (77)

whereR is as in (10), and a Schwarzian breaking soliton hierarchy

ϕt2n+1 + R̃nϕy = 0 n = 0, 1, . . . (78)

whereR̃ is as in (12). We note that the hierarchy (77) does not seem to have been written
down before, although the first non-trivial member

ut3 + uxxy − 4u2uy − 4ux∂
−1
x (uuy) = 0 (79)

does appear in [31]. The hierarchy (78) also appears to be new; its first non-trivial flow
can be written as

ϕt3 + ϕx∂−1
x ∂y{ϕ; x} = 0. (80)

This last is the singular manifold equation of both (76) and (79) for zero value of the spectral
parameterλ(y, t) appearing in the corresponding non-isospectral scattering problems.

It is easy to see that equation (77) is invariant underu → −u. We can also show
formally that the hierarchy (78) is invariant under the action of the Möbius group. We first
rewrite the hierarchy (78) as

E2n+1[ϕ] ≡ ϕt2n+1 + ϕxF2n+1[ϕ] = 0 (81)

where

F2n+1[ϕ] = T n−1F3[ϕ] (82)

andT is the operator

T = ∂−1
x ϕx∂xϕ

−1
x ∂xϕ

−1
x ∂xϕx (83)

and

F3 = ∂−1
x ∂y{ϕ; x}. (84)

It is then simple matter to show that ifF is invariant under the M̈obius group then so is
T F (up to the non-locality due to the integration inT ). Then sinceF3 is invariant so is
anyF2n+1 and thus any member of the hierarchyE2n+1 = 0.
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We now apply our approach to the breaking soliton hierarchies given above. We give our
results in terms of solutions of the hierarchy (75). These solutions are all new. For reasons
of space we confine ourselves here to considering only the first three common solutions. At
each step we again renormalize and introduce a function of integration whose dependence
on the flow times is determined by substitution into the hierarchy. These functions of
integration depend also ony and so the solutions we obtain are rational inx and t but
also involve arbitrary functions ofy. Special choices of these functions allow us to make
a reduction of the solutions obtained to those obtained earlier for the KdV hierarchy.

For the hierarchy (75), the solutions we obtain can be written as

ω = 2(logPk)xx . (85)

The first three polynomialsPk we obtain are

P1 = x + f (y) (86)

P2 = [x + f (y)]3+ 12[f ′(y)t3+ g(y)] (87)

P3 = [x + f (y)]6+ 60[x + f (y)]3[f ′(y)t3+ g(y)] − 720[f ′(y)t3+ g(y)]2

+360[x + f (y)][f ′′(y)t3+ 2g′(y)]t3

− 720[x + f (y)][f ′(y)t5+ h(y)] (88)

wheref (y), g(y) andh(y) are arbitrary functions ofy. The KdV hierarchy arises as the
reduction∂y = ∂x of (75) and accordingly the solutions of the KdV hierarchy corresponding
to (61) and (63), (64), (65) are obtained from equations (85) and (86), (87), (88) above by
choosingf (y) = y, and g(y), h(y) both constant. It is clear that our earlier results on
negative indices and the representation of solutions using lower families hold for these
breaking soliton hierarchies also.

8. Conclusions

The recent work of Kudryashov simplified the earlier approach of Weiss to the question of
obtaining rational solutions. Here, by exploring the link between Miura maps and truncated
Painlev́e expansions, we have extended this work of Kudryashov, and thus also that of
Weiss, in order to derive rational solutions of every member (simultaneously) of a hierarchy.
This then gives an alternative approach, based on the use of corresponding Schwarzian
hierarchies, to the construction of such solutions.

We have used our knowledge of the indices for every family of every flow of the
mKdV hierarchy to understand what our mapping from the SKdV hierarchy to the mKdV
hierarchy is telling us about the results of using a truncated Painlevé expansion for the
mKdV hierarchy. We have also obtained a closed form for the index polynomial of every
family of every flow of the SKdV hierarchy.

We have given a representation of the rational solutions obtained for the KdV hierarchy
using lower families of the hierarchy. Using this representation allows the rational solutions
to remain solutions of every flow of the hierarchy. Also in this representation we have seen
the inclusion of arbitrary data corresponding to negative indices.

We have used the approach outlined here to derive an alternative form for the Bäcklund
transformation for the PII hierarchy, and also to find new solutions for a hierarchy of breaking
soliton equations in 2+ 1 dimensions. We have also given for the first time a Schwarzian
version of this breaking soliton hierarchy.
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